Idelalisib given front-line for the treatment of CLL results in frequent and severe immune-mediated toxicities

Benjamin L. Lampson, Tiago R. Matos, Siddha N. Kasar, Haesook Kim, Elizabeth A. Morgan, Laura Rassenti, Matthew Davids, Thomas Kipps, Joshua Fein, Stacey Fernandes, Jerome Ritz, Jennifer R. Brown

ASH Annual Meeting Abstracts 2015:0497
Background

• Idelalisib inhibits the p110δ isoform of PI3K
 • P110δ expression is primarily limited to leukocytes¹

• P110δ integrates and transduces signals that are important for lymphocyte growth, survival, and migration

• The combination of idelalisib with rituximab improved ORR, PFS, and OS compared to rituximab monotherapy in patients with R/R CLL²

CLL = chronic lymphocytic leukemia; ORR = overall response rate; OS = overall survival; PFS = progression-free survival; PI3K = phosphatidylinositol 3-kinase; R/R = relapsed/refractory
This was a phase II study of idelalisib plus ofatumumab in previously untreated CLL/SLL

As of September 11, 2015, the trial was ongoing with 24 subjects enrolled

Median time on therapy was 7.7 months (range: 0.7–16.1)

bid = twice a day
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Idelalisib + Ofatumumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients enrolled, n</td>
<td>24</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>75</td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>67.4 (57.6–84.9)</td>
</tr>
<tr>
<td>Prior number of therapies</td>
<td>0</td>
</tr>
<tr>
<td>CLL genetics, n (%)</td>
<td></td>
</tr>
<tr>
<td>Unmutated IGHV</td>
<td>13 (54%)</td>
</tr>
<tr>
<td>Del(17p)/TP53 mutations</td>
<td>4 (17%)</td>
</tr>
<tr>
<td>Del(11q)</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Del(13q)</td>
<td>13 (54%)</td>
</tr>
</tbody>
</table>

CLL = chronic lymphocytic leukemia; del(11q) = deletion 11q; del(13q) = deletion 13q; del(17) = deletion 17p; IGHV = immunoglobulin heavy chain variant; TP53 = tumour protein 53
Frequent and Severe Hepatotoxicity with Idelalisib

The majority of patients had grade ≥3 hepatotoxicity (52%).

$ALT = \text{alanine aminotransferase}; \text{CTCAE} = \text{Common Terminology Criteria for Adverse Events}$
Incidence of Toxicities

<table>
<thead>
<tr>
<th></th>
<th>Phase I</th>
<th>Overall relapsed</th>
<th>Upfront patients aged ≥65</th>
<th>Upfront idelalisib + ofatumumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>54</td>
<td>760</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Median prior therapies (range)</td>
<td>5 (2–14)</td>
<td>≥1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>63 (37–82)</td>
<td>66 (21–91)</td>
<td>71 (65–90)</td>
<td>67.4 (58–85)</td>
</tr>
<tr>
<td>Median time on therapy, months (range)</td>
<td>15 (0.2–48.7)</td>
<td>—</td>
<td>22.4 (0.8–45.8)</td>
<td>7.7 (0.7–16.1)</td>
</tr>
<tr>
<td>Grade ≥3 transaminitis, %</td>
<td>1.9</td>
<td>14</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>Grade ≥3 colitis/diarrhea, %</td>
<td>5.6</td>
<td>14</td>
<td>42</td>
<td>13</td>
</tr>
<tr>
<td>Any grade pneumonitis, %</td>
<td>5.6</td>
<td>3</td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

Reference

• An analysis of previous studies suggested that toxicities were more common in less heavily pretreated patients.
Age Was a Risk Factor for Early Hepatotoxicity

- All patients with age ≤65 years (n = 7) required systemic steroids for toxicities
Idelalisib Toxicities are Likely Due to On-Target Immune-Mediated Effects

• Activated immune infiltrate was found on liver biopsy

• Intestinal biopsies from patients with idelalisib-related colitis showed intraepithelial CD8+ lymphocytosis and crypt cell apoptosis

CD = cluster of differentiation
Responsiveness to Steroids:
Kaplan-Meier Time to Initiation of Steroids

![Graph showing Kaplan-Meier Time to Initiation of Steroids](image)
Twelve subjects with grade ≥2 transaminitis were rechallenged with the drug after holding for toxicity

- Five patients were rechallenged while off steroids; four developed recurrent transaminitis within 1–4 days (grade 2: n = 1; grade 3: n = 2; grade 4: n = 1)

- Seven patients were rechallenged while on steroids; two developed recurrent transaminitis within 3–4 days (grade 2: n = 1; grade 3: n = 1)
The Connection between p110δ and Regulatory T-Cells

- Mice with genetic inactivation of p110δ developed autoimmune colitis\(^1\)

- Mutations that disrupted the function of regulatory T-cells in mice and humans led to autoimmune syndromes with hepatitis, enteritis, and pneumonitis\(^2,3\)

- Mice with genetic inactivation of p110δ had decreased numbers and function of regulatory T-cells\(^4\)

Decrease in Regulatory T-Cells While on Therapy

- Eleven out of 15 patients with matched samples (73%) had a decrease in the percentage of regulatory T-cells over time.
Change in Ratio of Regulatory T-Cells to Conventional T-Cells
Change in CD95 Level on Regulatory T-Cells

- CD95 is a pro-apoptotic marker

CD = cluster of differentiation
Summary and Conclusion

• An early fulminant hepatotoxicity developed in a subset of primarily younger patients treated with idelalisib monotherapy in the front-line setting

• Multiple lines of evidence suggest that this early hepatotoxicity is immune-mediated

• The proportion of regulatory T-cells in the peripheral blood decreased on idelalisib therapy, providing a possible explanation for the development of early hepatotoxicity